Okotherm® CIC Fire Resistant Cable

600V Power Cable—Type MC-HL C-L-X, Aluminum Sheath
3 Tinned or Nickel Coated Copper Conductors, 90°C Wet or Dry Rating
For Cable Tray Use - Sunlight Resistant - For Direct Burial

Cable Description
Nickel coated or tinned coated copper conductors, Okotherm CIC fire resistant thermoset silicone insulation, with FR tape if required, color or number coded fiber glass braid, cabled conductors, grounding conductor, cable tape, aluminum CLX sheath, Okoseal (PVC) jacket.

Conductors: Tinned Coated Copper or Nickel Coated Copper

Insulation: Okotherm Thermoset Silicone, with FR tape if required

Color Code: ICEA S-73-532, Method 3 or 5

Grounding Conductor: Uninsulated, same metal as phase conductor

Braid: Fiber Glass Braid

Armor-CLX: Continuously Welded and Corrugated Aluminum

Outer Jacket: Black PVC

Applicable Industry Standards:
— UL 1569, 2225 & 1309 — ICEA S-95-658 (NEMA WC70), ICEA S-73-532 (NEMA WC 57) — ASTM B-33 & B-355

Flame Tests:
IEC 60331, ICEA T-29-520, IEEE 1202

Applications
Okotherm CIC 600 volt power cables are used in systems where, in the event of a fire, circuit integrity is required in order to maintain a process or to safely shut down the process. Fire resistance is determined by compliance to the IEC 60331 circuit integrity fire test. Okotherm CIC cables maintain circuit integrity based on qualification to the IEC standard 60331 for all temperatures and times up to and including 2000°F for three hours. When exposed to a fire, the Okotherm CIC insulation becomes an electrically insulating ceramic-like ash that is capable of maintaining the operating voltage.

Okotherm CIC CLX Type MC-HL power cables are authorized for use on services, feeders and branch circuits for power, lighting, control and signaling circuits in accordance with NEC articles 330 and 725.

Product Features
- UL Listed as Type MC-HL cable E38916 and Marine Shipboard Cable E137931.
- UL Listed for cable tray use, direct burial (2/C 14 AWG and larger) and sunlight resistant.
- Passes the 210,000 BTU ICEA T-29-520 Vertical Tray Flame Test.
- Complete pre-packaged, factory-tested wiring system — color coded.
- C-L-X cables are quality control inspected to meet or exceed applicable UL standards.
- 90°C continuous operating temperature in all types of installations.
- 130°C emergency rating.
- 250°C short circuit rating.
- Good EMI shielding characteristics.
- Impervious, continuous metallic sheath excludes moisture, gases and liquids.
- Reduced sealing fitting requirements in Class I, Division 2 or Zone 2 hazardous locations (NEC Section 501.15(E)(3) or 505.16(C)(2)(c).
- Lower installed system cost than conduit or EMT systems.
- Provides excellent grounding safety.
- Excellent compression and impact resistance.
- Continuous long lengths.
- Minimum installation temperature of -40°C or °F.
- American Bureau of Shipping (ABS) listed as CWCMC Type MC-HL.
- Fire Resistant - qualified to 2000°F for 3 hours per IEC 60331.
- Optional LSZH jacket available.

A Tinned or Nickel Coated Copper Conductors
B Okotherm (Silicone) Thermoset Insulation
C Coated Copper Grounding Conductor
D Fiber Glass Braid - Coded per ICEA
E Glass Fillers
F Cable Tape
G Impervious, Continuous, Corrugated, Aluminum C-L-X Sheath
H Black Okoseal Jacket
Okotherm CIC Fire Resistant Cable
600V Power Cable—Type MC-HL C-L-X, Aluminum Sheath
3 Tinned or Nickel Coated Copper Conductors, 90°C Wet or Dry Rating
For Cable Tray Use - Sunlight Resistant - For Direct Burial

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Conductor Size</th>
<th>Number of Conductors</th>
<th>Insulation Thickness - mils</th>
<th>Grounding Conductor - AWG</th>
<th>Core O.D. - Inches</th>
<th>C-L-X O.D. - Inches</th>
<th>Jacket Thickness - mils</th>
<th>Approx. O.D. - Inches</th>
<th>Cross-Sectional Area (sq. in.)</th>
<th>Approx. Net Weight</th>
<th>Approx. Ship Weight</th>
<th>90°C Wet or Dry Ampacity</th>
<th>75°C Wet</th>
<th>NEC Ampacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>546-15-3403</td>
<td>14 (7X)</td>
<td>3</td>
<td>45</td>
<td>14</td>
<td>0.46</td>
<td>0.67</td>
<td>50</td>
<td>0.78</td>
<td>0.48</td>
<td>291</td>
<td>371</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>546-15-3503</td>
<td>12 (7X)</td>
<td>3</td>
<td>45</td>
<td>12</td>
<td>0.50</td>
<td>0.71</td>
<td>50</td>
<td>0.82</td>
<td>0.53</td>
<td>346</td>
<td>426</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>546-15-3603</td>
<td>10 (7X)</td>
<td>3</td>
<td>45</td>
<td>10</td>
<td>0.55</td>
<td>0.80</td>
<td>50</td>
<td>0.91</td>
<td>0.65</td>
<td>433</td>
<td>513</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>571-15-3553</td>
<td>8 (133X)</td>
<td>3</td>
<td>60</td>
<td>10</td>
<td>0.73</td>
<td>0.97</td>
<td>50</td>
<td>1.08</td>
<td>0.92</td>
<td>614</td>
<td>694</td>
<td>55</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>571-15-3653</td>
<td>6 (133X)</td>
<td>3</td>
<td>60</td>
<td>8</td>
<td>0.82</td>
<td>1.06</td>
<td>50</td>
<td>1.17</td>
<td>1.08</td>
<td>804</td>
<td>884</td>
<td>75</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>571-15-3753</td>
<td>4 (133X)</td>
<td>3</td>
<td>60</td>
<td>8</td>
<td>0.94</td>
<td>1.24</td>
<td>50</td>
<td>1.35</td>
<td>1.43</td>
<td>1057</td>
<td>1163</td>
<td>95</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>571-15-3803</td>
<td>2 (7X)</td>
<td>3</td>
<td>60</td>
<td>6</td>
<td>1.04</td>
<td>1.29</td>
<td>50</td>
<td>1.40</td>
<td>1.54</td>
<td>1327</td>
<td>1433</td>
<td>130</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>571-15-3903</td>
<td>1 (19X)</td>
<td>3</td>
<td>60</td>
<td>6</td>
<td>1.12</td>
<td>1.37</td>
<td>50</td>
<td>1.48</td>
<td>1.72</td>
<td>1543</td>
<td>1686</td>
<td>150</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>571-15-3913</td>
<td>1/0 (19X)</td>
<td>3</td>
<td>60</td>
<td>6</td>
<td>1.20</td>
<td>1.47</td>
<td>50</td>
<td>1.58</td>
<td>1.96</td>
<td>1810</td>
<td>1953</td>
<td>170</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>571-15-3923</td>
<td>2/0 (19X)</td>
<td>3</td>
<td>60</td>
<td>6</td>
<td>1.31</td>
<td>1.60</td>
<td>60</td>
<td>1.73</td>
<td>2.35</td>
<td>2204</td>
<td>2391</td>
<td>195</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>571-15-3943</td>
<td>4/0 (19X)</td>
<td>3</td>
<td>60</td>
<td>4</td>
<td>1.52</td>
<td>1.83</td>
<td>60</td>
<td>1.96</td>
<td>3.02</td>
<td>3197</td>
<td>3463</td>
<td>260</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>571-15-3953</td>
<td>250 (37X)</td>
<td>3</td>
<td>95</td>
<td>4</td>
<td>1.72</td>
<td>2.06</td>
<td>60</td>
<td>2.19</td>
<td>3.77</td>
<td>3852</td>
<td>4144</td>
<td>290</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>571-15-3963</td>
<td>350 (37X)</td>
<td>3</td>
<td>95</td>
<td>3</td>
<td>1.93</td>
<td>2.28</td>
<td>75</td>
<td>2.44</td>
<td>4.68</td>
<td>5106</td>
<td>5665</td>
<td>350</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>571-15-3973</td>
<td>500 (37X)</td>
<td>3</td>
<td>95</td>
<td>2</td>
<td>2.21</td>
<td>2.58</td>
<td>75</td>
<td>2.74</td>
<td>5.90</td>
<td>6861</td>
<td>7453</td>
<td>430</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>571-15-3983</td>
<td>750 (61X)</td>
<td>3</td>
<td>110</td>
<td>1</td>
<td>2.67</td>
<td>3.11</td>
<td>85</td>
<td>3.30</td>
<td>8.55</td>
<td>10153</td>
<td>11175</td>
<td>535</td>
<td>475</td>
<td></td>
</tr>
</tbody>
</table>

(1) - Uninsulated, same metal as phase conductor

Okonite's web site, www.okonite.com contains the most up to date information.

† Cross-sectional area for calculation of cable tray fill in accordance with NEC Section 392.22.

(2) Ampacities

Ampacities are based on 310.15(B)(16) of the National Electrical Code for conductors rated 90°C, in a multi-conductor cable, at an ambient temperature of 30°C (86°F). The 75°C column is provided for additional information.

The ampacities shown apply to open runs of cable, installation in any approved raceway, direct burial in the earth, or as aerial cable on a messenger. Derating for more than three current carrying conductors within the cable is in accordance with NEC Section 310.15(B)(3)(a)

The ampacities shown also apply to cables installed in cable tray in accordance with NEC Section 392.80.