Okoguard®-Okoclear®-TS Type MV-105
5/8kV Shielded Power Cable
One Okopact® (Compact Stranded) Copper Conductor/105°C Rating Wet or Dry
For Cable Tray Use - Sunlight Resistant - Oil Res I & II

Insulation
Okoguard is Okonite’s registered trade name for its exclusive ethylene-propylene rubber (EPR) based, thermosetting compound, whose optimum balance of electrical and physical properties is unequalled in other solid dielectrics. Okoguard insulation, with the distinctive red color and a totally integrated EPR system, provides the optimum balance for long, problem free service.

Jacket
The Okoclear-TS jacket on this cable is a low smoke, non-halogenated, vulcanized crosslinked polyolefin (XLPO) based compound. It provides excellent resistance to mechanical abuse, flame, weathering, most oils, acids and alkalis.

Applications
Okoguard shielded Okoclear-TS Type MV-105 power cables are recommended for use as feeder circuits, in electric utility generating stations, for distribution circuits, and for feeders or branch circuits in industrial and commercial installations, where a cable with low smoke/zero halogen characteristics is needed.

Type MV cables may be installed in wet or dry locations, indoors or outdoors (exposed to sunlight), in any raceway or underground duct, directly buried if installed in a system with a grounding conductor in close proximity that conforms with NEC Section 336.36 and 250.4(A)(5), or messenger supported in industrial establishments and electric utilities.

May be installed in cable trays where permitted by NEC Section 311.32(2).

Specifications
Conductor: Uncoated copper compact stranded per ASTM B-496.

Strand Screen: Extruded semiconducting EPR strand screen. Meets or exceeds electrical and physical requirements of ICEA S-93-639/NEMA WC74 & S-97-682, AEIC CS8, CSA C68.10, and UL 1072.

Insulation: Meets or exceeds electrical and physical requirements of ICEA S-93-639/NEMA WC74 & S-97-682, AEIC CS8, CSA C68.10, and UL 1072.

Insulation Screen: Extruded semiconduction EPR insulation screen. Meets or exceeds electrical and physical requirements of ICEA S-93-639/NEMA WC74 & S-97-682, AEIC CS8, CSA C68.10, and UL 1072.

Shield: 5 mil bare copper tape helically applied, with 25% minimum overlap.

Jacket: Meets or exceeds electrical and physical requirements of ICEA S-93-639 and CSA C68.10 for Type II crosslinked polyolefin jackets.

UL listed as Type MV-105, sunlight resistant and for use in cable tray in accordance with UL 1072.

CSA C68.10 listed as FT4-ST1, HALOGEN-FREE, SR, LTDD (-25°C), and TC-ER.

Product Features
- Low smoke/zero halogen jacket.
- Okoguard cables meet or exceed all recognized industry standards (UL, NEMA/ICEA and IEEE).
- Triple tandem extruded, all EPR system.
- 105°C continuous operating temperature.
- 140°C emergency rating.
- 250°C short circuit rating
- Excellent corona resistance.
- Exceptional resistance to “treeing”.
- Screens are clean stripping.
- Exceptional resistance to moisture.
- Resistant to most oils, acids, and alkalis.
- UL listed: MV-105, Sunlight Resistant, Cable Tray Use, and Oil Res I & II.
Okoguard Insulation: 115 mils (2.92mm), 5kV—133% or 8kV—100% Insulation Level

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Conductor Size</th>
<th>Approx. Dia. over Insulation (in.)</th>
<th>Jacket Thickness (mils)</th>
<th>Approx. O.D. - mm</th>
<th>Approx. O.D. - mm</th>
<th>Approx. Net Weight (lbs./1000')</th>
<th>Approx. Ship Weight (lbs./1000')</th>
<th>Conduit in Air</th>
<th>Ampacities</th>
<th>Underground Duct</th>
<th>Cable Tray</th>
</tr>
</thead>
<tbody>
<tr>
<td>114-23-2012</td>
<td>1/0</td>
<td>53.5</td>
<td>0.61</td>
<td>0.67</td>
<td>80</td>
<td>2.03</td>
<td>0.93</td>
<td>23.6</td>
<td>704</td>
<td>759</td>
<td>215</td>
<td>215</td>
<td>215</td>
<td>215</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114-23-2013</td>
<td>2/0</td>
<td>67.4</td>
<td>0.65</td>
<td>0.71</td>
<td>60</td>
<td>1.52</td>
<td>0.92</td>
<td>23.4</td>
<td>765</td>
<td>815</td>
<td>255</td>
<td>245</td>
<td>250</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114-23-2014</td>
<td>3/0</td>
<td>85.0</td>
<td>0.70</td>
<td>0.76</td>
<td>80</td>
<td>2.03</td>
<td>1.02</td>
<td>25.9</td>
<td>950</td>
<td>1020</td>
<td>290</td>
<td>275</td>
<td>290</td>
<td>290</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114-23-2015</td>
<td>4/0</td>
<td>107.0</td>
<td>0.75</td>
<td>0.81</td>
<td>80</td>
<td>2.03</td>
<td>1.06</td>
<td>26.9</td>
<td>1105</td>
<td>1185</td>
<td>330</td>
<td>315</td>
<td>335</td>
<td>335</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114-23-2020</td>
<td>250</td>
<td>127.0</td>
<td>0.80</td>
<td>0.86</td>
<td>80</td>
<td>2.03</td>
<td>1.12</td>
<td>28.4</td>
<td>1255</td>
<td>1335</td>
<td>365</td>
<td>345</td>
<td>370</td>
<td>370</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114-23-2022</td>
<td>350</td>
<td>177.0</td>
<td>0.89</td>
<td>0.95</td>
<td>80</td>
<td>2.03</td>
<td>1.21</td>
<td>30.7</td>
<td>1615</td>
<td>1705</td>
<td>440</td>
<td>415</td>
<td>460</td>
<td>460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114-23-2025</td>
<td>500</td>
<td>253.0</td>
<td>1.03</td>
<td>1.07</td>
<td>80</td>
<td>2.03</td>
<td>1.32</td>
<td>33.5</td>
<td>2135</td>
<td>2270</td>
<td>535</td>
<td>500</td>
<td>575</td>
<td>575</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114-23-2030</td>
<td>750</td>
<td>380.0</td>
<td>1.19</td>
<td>1.25</td>
<td>80</td>
<td>2.03</td>
<td>1.50</td>
<td>38.1</td>
<td>3005</td>
<td>3245</td>
<td>655</td>
<td>610</td>
<td>745</td>
<td>745</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114-23-2040</td>
<td>1000</td>
<td>507.0</td>
<td>1.34</td>
<td>1.42</td>
<td>80</td>
<td>2.03</td>
<td>1.66</td>
<td>42.2</td>
<td>3870</td>
<td>4050</td>
<td>755</td>
<td>690</td>
<td>890</td>
<td>890</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Okonite’s web site, www.okonite.com contains the most up to date information.

Aluminum Conductors

1. Aluminum conductors are available on special order.

Ampacities

2. Ampacities are in accordance with Table 311.60(C)(73) of the NEC for three single Type MV-105 5kV conductors, or single conductors twisted together (triplexed) and installed in an isolated conduit in air at an ambient temperature of 40°C and a conductor temperature of 105°C. Refer to Table 311.60(C)(77) for 8kV ampacities.

3. Ampacities are in accordance with Table 311.60(C)(77) of the NEC for three single 5kV conductors or triplexed cable in one underground raceway, three feet deep with a conductor temperature of 105°C, 100% Load Factor, an ambient earth temperature of 20°C, and thermal resistance (RHO) of 90. Refer to Table 311.60(C)(77) for 8kV ampacities.

4. Ampacities based on single Type MV-105 5kV conductors, or single conductors twisted together (triplexed, quadruplexed, etc.), size 1/0 AWG and larger, installed in uncovered cable tray in accordance with Section 392.80(B) of the NEC at an ambient temperature of 40°C and a conductor temperature temperature rating of 105°C. In accordance with NEC Section 392.80(B)(1) the ampacities are 75% of the values given in NEC Table 311.60(C)(69) (copper conductors). Where the cable tray is covered for more than six feet with solid unventilated covers, the ampacities shall not exceed 93% of the values shown above. Refer to Table 311.60(C)(69) for 8kV ampacities.

5. Recommended size of rigid or nonmetallic conduit for three conductors based on 40% maximum fill.

*The jam ratio, conduit I.D. to cable O.D. should be checked to avoid possible jamming.